The power graph of a torsion-free group of nilpotency class 2

نویسندگان

چکیده

The directed power graph $$\vec {\mathcal {G}}( G)$$ of a group G is the simple digraph with vertex set in which $$x\rightarrow y$$ if y x, and underlying $$\mathcal {G}( . In this paper, three versions definition are discussed, it proved that by any determines other two up to isomorphism. It also torsion-free nilpotency class 2 H such H)\cong \mathcal , then have isomorphic graphs, was an open problem proposed Cameron, Guerra Jurina [9].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

a note on the power graph of a finite group

suppose $gamma$ is a graph with $v(gamma) = { 1,2, cdots, p}$and $ mathcal{f} = {gamma_1,cdots, gamma_p} $ is a family ofgraphs such that $n_j = |v(gamma_j)|$, $1 leq j leq p$. define$lambda = gamma[gamma_1,cdots, gamma_p]$ to be a graph withvertex set $ v(lambda)=bigcup_{j=1}^pv(gamma_j)$ and edge set$e(lambda)=big(bigcup_{j=1}^pe(gamma_j)big)cupbig(bigcup_{ijine(gamma)}{uv;uin v(gamma_i),vin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2021

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-021-01067-1